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Preface
... . . ]

This book is the result of many vears of teaching graduate courses on multivanate
statistics. The students in these courses were primarily from business. sciences, and
behavioral sciences, and were 1nterested in getting a good working knowledge of the
multivariate data analytic techniques without getting bogged down with derivations
and/or rigorous proofs. That is, consistent with the needs of today’s managers. the stu-
dents were more interested in knowing when to correcily use a particular technique and
its interpretation rather than the mechanics of the technique. The available textbooks
were either too technical or were too applied and cookbook in nature. The technical
books concentrated more on derivation of the techniques and less on interpretation of
the results. On the other hand, books with a cookbook approach did not provide much
discussion of the techniques and essentially provided a laundry list of the dos and don’ts.
This motivated me to develop notes for the various topics that would emphasize the con-
cepts of a given technique and its application without using matrix algebra and proofs.
Extensive in-class testing and refining of these notes resulted in this book-

My approach here is to make statistics a “kinder and gentler” subject by introducing
students to the various multivariate techniques used in businesses without intimidating
them with mathematical derivations. The main emphasis is on when to use the varnous
data analytic lechniques and how to interpret the resulting output obtained from the
most widely used statistical packages (e.g.. SPSS and SAS). This book achieves these
objectives using the following strategy.

ORGANIZATION

Most of the chapters are divided into two parts, the text and an appendix. The text
provides a conceptual understanding of technique. with basic concepts illustrated by
a small hypothetical data set and geometry. Geometry is very effective in providing
a clear. concise, and nonmathematical treatment of the technique. However, because
some students are unfamiliar with geometrical concepts and data manipulations, Chap-
ter 2 covers the basic high-school level geometrical concepts used throughout the book.
and Chapter 3 discusses fundamental data manipulation techniques.

Next, wherever appropriate. the same data set is used to provide an analytical dis-
cussion of the technique. This analytical approach essentially reinforces the concepts
discussed using geometry. Again, high-school level math is used in the chapter, and no
matrix algebra or higher-level math are emploved. This is followed by using the same
hypothetical data to obtain the output from either SPSS or SAS. A detailed discussion
of the interpretation of the output is provided and. whenever necessary. computations of

wvii



viii PREFACE

the various interpretive statistics reported in the output are illustrated in orderto give a
better understanding of these statistics and their use in interpreting the results. Finally,
wherever necessary, an actual data set is used to illustrate application of the technique.

Most of the chapters also contain an appendix. The appendices are technical in na-
ture, and are meant for students who already have taken a basic course in linear algebra.
However, the chapters are completely independent of the appendices and on their own
provide a solid understanding of the basic concepts of a given technique, and how to
meaningfully interpret statistical output.

We have not provided an appendix or & chapter to review matrix algebra because
it simply is not needed. The student can become a sophisticated user of the technique
without a working knowledge of matrix algebra. Furthermore, the discussion provided
in rypical review chapters is almost always insufficient for those who have never had
a formal course on matrix algebra. And those who have had 2 formal course in matrix
algebra are better served by reviewing the appropriate matrix algebra textbook.

TOPICS COVERED

The multivariate techniques covered in this book are divided into two categories: in-
terdependence and dependence techniques (Chapter ! provides a detailed distinction
between the two types of techniques). In the interdependence methods no distinction is
made between dependent and independent variables and as such the focus is on analyz-
ing information contained in one large set of variables. For the dependence techniques,
a distinction is made between one set of variables (normally referred to as independent
variables) and another set of variables (normaily referred to as dependent variables)
and the focus is on how the two sets of vanables are r:lated. The chapters in the book
are organized such that all the interdependence methods are covered first, followed
by the dependence methods. Principal components analysis, tactor analysis, confirma-
tory factor analysis. and cluster analysis are the interdependence topics covered in this
text. The dependence techmiques covered are two-group and multiple-group discrimi-
nant analysis, logistic regression analysis, multivariate analysis of variance, canonical
correlation, and structural equations. Many of these techniques make a number of as-
sumptions, such as data coming from & multivariate normal distribution and equality of
groups with respect to variances and covariances. Chapter 12 discusses the procedures
used 1o test these assumptions.

SUPPLEMENTAL MATERIALS

Many of the end-of-chapter exercises require hand calculations or spreadsheets and are
designed to reinforce the concepts discussed in the chapter; others require the use of
statistical packages to analyze the accompanying data sets. The enclosed data diskeite
contains data sets used in the book and the end-of-chapter exercises. To further enhance
learning, the reader can analyze the data sets using other statistical software and com-
pare the results to those reported in the book. However, it should be noted that the best
learning takes place through the use of data sets with which students are familiar and
that are from their own fields of study. Consequently. it is recommended that the reader
also obtain data sets from their disciplines and analyze them using the appropriate
techniques.
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An Instructor’s Manual to accompany the text offers detailed answers to all end-
of-chapter exercises. including computer output for questions that require students to
perform data analysis. The /nstructor’'s Manual also contains transparency masters for
all the exhibits.
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CHAPTER 1

Introduction

Let the data speak! There are a number of different statistical techniques that can be
used to analyze the data. Obviously, the objective of data analysis is to extract the rel-
evant information contained in the data which can then be used to solve a given prob-
lem.! The given problem is normally formulated into one or more null hypotheses. The
collected sample data are used to statistically test for the rejection or nonrejection of
the null hypotheses. which leads to the solution of the problem. That is. the nuil hy-
potheses represent the problem and the “relevant information” contained in the data are
used to statistically test the null hypotheses. The purpose of this chapter is to give the
reader a brief overview of the different techniques that are available to extract relevant
information contained in the data set (i.e.. to test the null hypotheses representing a
given problem). A number of classification schemes exist for classifving the statisti-
cal techniques. The following section discusses one such classification scheme. For an
example of other classification schemes see Andrews et al. (1981). Since most of the
¢classification schemes, including the one discussed in this chapter, are based on types
of measurement scales and the number of variables, we first provide a brief discussion

of these topics.

L1 TYPES OF MEASUREMENT SCALES

Measurement is a process by which numbers or symbols are attached to given char-
acteristics or properties of stimuli according to predetermined rules or procedures. For
example, individuals can be described with respect to a number of characteristics such
as age, education, income. gender, and brand preferences. Appropriate measurement
scales can be used to measure these characteristics. Stevens (1946) postulated that all
measurement scales can be classified inte the following four types: nominal. ordinal,
interval, and ratio. This typology for classifyving measurement scales has been adopted
in social and behavioral sciences. Following is a brief discussion of the four types of
scales. However, we would like to caution the reader that considerable debate, without
a clear resolution, regarding the use of Stevens’s typology for classifying measurement
scales has appeared in the statistical literature (see Velleman and Wilkinson (1993) for

further details).

!'The term information is used very lovsely and may not necessarily have the same meaning as in information
theory.



2 CHAPTER1 INTRODUCTION

1.1.1 Nominal Scale

Consider the gender variable. Typically we use numerals (although this is not neces-
sary) to represent subjects’ genders. For example. we can arbitrarily assign number 1
for males and number 2 for females. The assigned numbers themselves do not have any
meaning, and therefore it would be inappropriate to compute such statistics as mean and
standard deviation of the gender variable. The numbers are simply used for categoniz-
ing subjects into different groups or for counting how many are in each category. Such
measurement scales are called nominal scales and the resulting data are called nominal
data. The statistics that are appropriate for nominal scales are the ones based on counts
such as mode and frequency distributions.

1.1.2 Ordinal Scale

Suppose we want to measure subjects’ preferences for four brands of colas. Brands A,
B. C. and D. We could ask each subject to rank order the four brands by assigning a 1
to the most preferred brand. a 2 10 the next most preferred brand. and so on. Consider
the following rank ordering given by one particular subject.

Brand Rank

=0
b -

From the preceding table we conclude that the subject prefers Brand A 10 Brand C,
Brand Cto Brand D. and Brand D to Brand B. However. even though the differences in
the successive numerical values of the ranks are equal. we cannot state by how much
the subject prefers one brand over another brand. That is. successive categories do not
represent equal differences of the measured attribute. Such measurement scales are re-
ferred to as ordinal scales and the resulting data are called ordinal data. Valid statistics
that can be computed for ordinal-scaied data are mode. median. frequency distributions,
and nonparametric statstics such as rank order correlation. For further details on non-
parametric statistics the reader is referred 10 Segal (1967). Variables measured using
nominal and ordinal scales are commonly referred to as nonmetric variables.

1.1.3 Interval Scale

Suppose that instead of asking subjects to rank order the brands. we ask them to rate
their brand preference according to the following five-point scale:

Scale Point Preference

Very high preference
High preference
Moderate preference
Low preference
Very iow preference

A o by —
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If we assume that successive categories represent equal degrees of preference. then we
could say that the difference in a subject’s preference for the two brands that received
ratings of | and 2 is the same as the difference in the subject’s preference for two other
brands that received ratings of 4 and 5. However, we still cannot say that the subject’s
preference for a brand that received a rating of 5 is five times the preference for a
brand that received a rating of 1. The following example clarifies this point. Suppose
we multiply each rating point by 2 and then add 10. This would result in the following
transformed scale:

Scale Point Preference
12 Very high preference
14 High preference
16 Moderate preference
18 Low preference
20 Very low preference

From the preceding table it is clear that the differences between the successive cate-
gories are equal; however, the ratio of the last to the first category is not the same as that
for the original scale. The ratio is 3 for the onginal scale and 1.67 for the transformed
scale. This is because by adding a constant we have changed the value of the base cat-
egory (i.e., very low preference). The scale does not have a natural base value or point.
That is, the base value 1s arbitrary. Measurement scales whose successive categories
represent equal levels of the characteristic that is being measured and whose base val-
ues are arbitrarv are called interval scales. and the resulting data are called interval
data. Properties of the interval scale are preserved under the following transformation:

Yr =a+bY|’

where Y, and Y;. respectively, are the onginal and wransformed-scale values and a and
b are constants. All statistics, except the ones based on ratios such as the coefficient of
variation, can be computed for interval-scaled data.

1.1.4 Ratio Scale

Ratio scales, in addition to having all the properties of the interval scale, have a natural
base value that cannot be changed. For example, a subject’s age has a natural base
value, which is zero. Ratie scales can be transtormed by multiplying by a constant;
however, they cannot be transformed by adding a constant as this will change the base
value. That is, only the following transformation is valid for the ratio scale:

Since aratio scale has a natural base value, statements such as “Subject A’s age is twice
Subject B’s age™ are valid. Data resulting trom ratio scales are referred to as ratio data.
There is no restriction on the kind of statistics that can be computed for ratio-scaled
data. Vaniables measured using interval and ratio scales are called metric variables.

1.1.5 Number of Variables

For ordinal-. interval-, and ratio-scaled data. determining the number of vanables is
straightforward. The number of variables is simply equal to the number of variables
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used to measure the respective characteristics. However, the procedure for determining
the number of variables for nominal scales is quite different from that for the other types
of scales. Consider, for example. the case where a researcher is interested in determin-
ing the effect of gender, a nominal variable. on coffee consumption. The two levels
of gender, male and female. can be numerically represented by one dummy or binary
vaniable, D,. Arbitrarily. a value of 0 may be assigned 10 D for all male subjects and
a-value of 1 for all female subjects. That is. the nominal variable, gender, is measured
by one dummy varniable.

Now suppose that the researcher is mterestcd in determining the effect of a subject’s
occupation (i.e.. professional. technical. or blue collar) on his/her coffee consumption.
The nominal variable, occupation. cannot be represented by one dummy variable. As
shown. two dummy variables are required:

Dummy Variables

Occupation D D-

Professional 0 0
Technical ¢ |
Blue collar [ 0

That is. occupation. a single nominal variable, is measured by the two dummy variables
D, and D,_ In vet another example, suppose the researcher is interested in determining
the effect of gender and occupation on coffee consumption. Three dummy or binary
variables (one for gender and two for occupation) are needed to represent the two nom-
inal variables. Therefore, the number of variables for nominal variables is equal to the
number of dummy variables needed to represent them.

12 CLASSIFICATION OF DATA ANALYTIC METHODS

Consider a data set consisting of » observations on p variables. Further assume that the
p varnables can be divided into two groups or subsets. Statistical methods for analyzing
these types of data sets are referred to as dependerice methods. The dependence meth-
ods test for the presence or absence of relationships between the two sets of variables.
However. if the researcher, based on controlled expeniments and/or some relevant the-
ory. designates variables in one subset as independent variables and variables in the
other subset as dependent variables. then the objective of the dependence methods is
to determine whether the set of independent variables affects the set of dependent vari-
ables individually and/or jointly. That is, statistical techniques only test for the presence
or absence of relationships between two sets of vanables. Whether the presence of the
relationship is due to one set of variables affecting another set of variables or to some
other phenomenon can enty be established by following the scientific procedures for es-
tablishing cause-and-effect relationships (e.g.. controlled experimentation). In this and
all subsequent chapters. the use of cause-and-effect terms implies that pioper scientific
principles for establishing cause-and-effect relationships have been followed.

On the other hand. data sets do exist for which it is impossible to conceprtually des-
ignate one set of variables as dependent and another set of variables as independent,
For these types of data sets the obhjectives are to identify Aow and w/hiv the variables are
related among themselves. Statistical methods for analyzing these types of data sels are
called interdependence methods.
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1.3 DEPENDENCE METHODS
Dependence methods can be further classified according to:

I.  The number of independent variables—one or more than one
The number of dependent variables—one or more than one.

3. The type of measurement scale used for the dependent variables (i.e., metric or
nonmetric).

4. The type of measurement scale used for the independent variables (i.e., metric or
nonmetric).

Table 1.1 gives a list of the statistical methods classified according to the above crite-
ria. A brief discussion of the statistical methods listed in Table 1.1 is provided in the

following sections.

1.3.1 One Dependent and One Independent Variable

Statistical methods for a single independent and a single dependent variabie are of-
ten referred to as wnivariate methods, whereas statistical methods for data sets with
more than one independent and/or more than one dependent variable are classified as
multivariate methods. Univariate methods are special cases of multivariate methods.
‘therefore, the univariate methods are discussed along with their multivariate counter

parts.

1.3.2 One Dependent Variable and More Than One
Independent Variable

Consider the example where the marketing manager of a tirm is interested in deter-
mining the relationship between the dependent variable, Purchase Intention (PF). and
the following independent variables: income (1), education (£), age (A), and lifestyle
(L). This purchase-behavior example is used to discuss the similarities and differences
among the data analytic techniques. Wherever necessary. additional examples are pro-
vided 1o further illustrate the different techniques,

For the purchase-behavior example, the relationship between the dependent variable.
P1I. and the independent variables can be represented by the following linear mode:

Pl =B+ Bl 4+ BrE+ B34+ BsL +e. (1.

One of the objectives of a given technique is to estimate the parameters Sq, 8. Ba.
B33, and B of the above model. Most of the dependence method techniques discussed
below are special cases of the linear model given by Eq. 1.1.

Regression

Multiple regression is used when the dependent variable and the muitiple independent
variables of the model given in Eq. 1.1 are measured using a metric scale resulting in
metric data such as income measured in dollars. Simple regression is a special name for
multiple regression when there is only one independent variable. For example. simple
regression would be used if the manager were interested in determining the relationship
between Pf and /.

Pl =3.+8/J+e¢
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Analysis of Variance

In many situations, a2 nominal scale is used to measure the independent variables. For
instance, rather than obtaining the subjects’ exact incomes the researcher can catego-
rize the subjects as having high, medium, or low incomes. Table 1.2 gives an example
of kow nominal or categorical variables can be used to measure the independent vari-
ables. Analysis of variance (ANOVA) is the appropriate technique for estimating the
parameters of the linear model given in Eq. 1.1 when the independent variables are
nominal or categorical.

As another example, consider the case where a medical researcher is interested in
the following research issues; (1) Does gender affect cholesterol levels? (2) Does oc-
cupation affect cholesterol levels? and. (3) Do gender and occupation jointly affect
cholestero] levels? In this example, the independent variables. gender and occupation,
are nominal (i.e., categorical), and the dependent variable, cholesterol level, is metric.
Again, ANOVA is the appropriate statistical method for this type of data set, Therefore,
ANOVA is a special case of multiple regression in which there are multiple indepen-
dent variables and one dependent variable. The difference is in the level of measurement
used for the independent variables. If the number of nonmetnc independent vanables,
as measured by dummy vanables. is one, then ANOVA reduces to a simple r-test. For
example, a /-test would be used to determine the effect of gender on subjects’ choles-
terol levels. That is, ts the difference in the average cholesterol levels of males and
females statistically significant?

Discriminant Analysis

Suppose that the dependent vanable, P/, in the purchase-behavior example is measured
using a nominal scale. That is, respondents are asked to indicate whether they will or
will not purchase a given product. The independent variables A. , E, and L, on the other
hand, are measured using an interval or a ratio scale. We now have a data set in which
the dependent vanable is categorical or nominal and the independent variables are met-
ric or continuous. The problem reduces to determining whether the two groups, potential

Table 1.2 Independent Variables Measured
Using Nominal Scale

Independent Variable Category

Income High income
Medium income
Low income

Education Less than high school
High school graduate
College graduate
Graduate school or more

Age Young
Middle aged
Senior citizen

Life style Qutgoing
Homebody
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purchasers and nonpurchasers of the product, are significantly different with respect
to the independent variables. And if they are, then can the independent variables be
used to develop a prediction equatien or classification rule for classifving consumers
into one of the two groups? Two-group discriminant analysis Is a special technique
developed for such a situation. The model for two-group discriminant analysis is the
same as that given in Eq. 1.1. Therefore, as is discussed in later chapters, one can use
mulnple regression to achieve the objectives of two-group discriminant analysis. That
is. two-group discriminant analvsis is a special case of multiple regression.

As another example, consider a data set consisting of two groups of firms: high- and
low-performance firms. An industry analyst is interested in identifying the financial
ratios that provide the best discrimination between the two types of firms. Furthermore.
the analyst is also interested in developing a procedure or rule to classify future firms
into one of the two groups. Here again. two-group discriminant analvsis would be the

appropriate technique.

Logistic Regression

One of the assumptions in discriminant analysis is that the data come from a multivari-
ate normal distribution. Furthermore, situations dc arise where the independent vari-
ables are a combination of metric and nominal variables. The multivariate normality
assumption would definitely not hold when the independent variables are combinations
of metric and nominal variables. Violation of the multivariate normality assumption
affects the statistical significance tests and the classification rates. Logistic regression
analysis, which does not make any distributional assumption for the independent vari-
ables, is more robust 10 the violation of the multivariate normality assumption than
discriminant analysis. and therefore 1s an alternative procedure to discriminant analy-
sis. The model for logistic regression is not the same as that given by Eq. 1.1, and hence
logistic regression analysis is not a special case of muitiple regression analysis.

Discrete Discriminant Analysis

In the purchase-behavior example, if the dependent variable is measured as above
(i.e..itis categorical) and the independent variables are measured as given in Table 1.2,
then one would use discrete discriminant analysis. It should be noted that the estima-
tion techniques and the classification procedures used in discrete discriminant analysis
are not the same as those for discriminant analysis. Specifically, discrete discriminant
analysis uses rules based on multinomial classification that are quite different from the
classification rules used by discriminant analysis. For further discussion on discrete
discriminant analysis see Goldstein and Dillon (1978).

Conjoint Analysis

For the purchase-behavior example. assume that the independent variables are mea-
sured as given in Table 1.2 and the dependent variable, P/, is measured using an ordinal
scale. The problem 1s very similar to that of ANOVA except that the dependent variable
15 now ordinal. In such a case one resorts (0 an estimation technique known as monotonic
aralysis of variance (MONANOVA )L MONANOVA belongs to a class of multivariate
techniques called conjoins analvsis. As illustrated in the following example. conjoint
analysis is a very popular technique for designing new products or services.

Suppose a financial institution s interested in introducing a new type of checking ac-
count. Based on previous research, management has identified the attributes consumers
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Table 1.3 Attributes and Their Levels for Checking
Account Example

1. Service fee
« No service fee
= A flat fee of $5.00 per monti:
» 32.00 per month plus $0.05 for each check written

Cancelled check return policy
+ C(Cancelled checks are returned
« Cancelled checks are not retumed

)

3. Account overdraft privilege
« No overdraft allowed
» A $5.00 charge for each overdraft

4. Phone transaction
* A 30.50 charge per transaction
= Free, unlimited phone transactions

5.  Minimum balance
= No minimum balance
=  Minimum balance of $500

use in selecting a checking account. Table 1.3 gives the attributes and their levels. The
attributes can be variously combined to obtain a total of 48 different types of checking
accounts. Management js interested in estimating the utilities that consumers attach to
each level of the attributes, These utilities (also referred o as part worths) can then be
used to design and offer the most desirable checking account.

In the above example, the independent variables are clearly nonmetric. ANOVA is
the appropriate technique if the dependent variable used to measure consumers’ pref-
erence for a given checking account. formed by a combination of the attributes. is
metric. On the other hand. if the dependent variable is ordinal (i.e.. nonmetric) then
MONANOVA is one of the suggested techniques.

1.3.3 More Than One Dependent and One or More
Independent Variables

Canonical Correlation

In the purchase-behavior example, assume that in addition to purchase intention we
also have measured consumers’ taste reactions (T R) to the product. The manager is
interested in knowing how the two sets of variables—the /. £. A. and L and the P/ and
T R—are related. Cancnical correlation analysis is the appropriate technique to analyze
the relationship between the two sets of variables. Canonical correlation procedure does
not differentiate between the two sets of variables. However, if based on some theory
the manager determines that one set of variables (i.e.. [, E, A, and L) is independent
and the other set of vanables (i.e.. P/ and TR) is dependent. then the manager can
use canonical cotrelation analysis to deiermine how the set of independent variables
jointly affects the set of dependent variables. Notice that canonical correlation reduces
to multiple regression in the case of one dependent variable, That is, muitiple regression
itself is a special case of canonical correlation.
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Multivariate Analysis of Variance

Suppose that in the purchase-behavior example the independent variables are nominal
(as given in Table 1.2) and the two dependent variables are metric. Multivariate analyvsis
of variance (MANOVA) is the appropriate multivariate method for this tvpe of data set.

In another example, assume that one is interested in determining how a firm’s finan-
cial health. measured by a number of financial ratios. is affected by such factors as size
of the firm. industry characteristics. tvpe of strategy emploved by the firm, and charac-
teristics of the CEQ and the board of directors. One could use MANOVA to determine
the effect of the independent vaniables on the dependent variables.

Multiple-Group Discriminant Analysis

Multiple-group discriminant analysis (MDA} is the appropriate method if the indepen-
dent variables are metric and the dependent variables are nonmetric. In the purchase-
behavior exampie. suppose that three groups of consumers are identified: the first group
is willing to purchase the product and likes the taste of the product: the second group is
not willing to purchase the product. but likes the product’s taste; and the third group of
consumers is unwilling to purchase the product and does not like the taste of the product.
The problem reduces to determining how the three groups differ with respect to the
independent variables and to identify a prediction equation or rule for classifving future
customers into one of the three groups.

In another example. suppose that tirms can be classified as: (1) high-performance
firms; (2) medium-performance firms: and (2) low-performance firms. An industry an-
alyst is interested in identifving the relevant financial ratios that provide the best dis-
crimination among the three types of firms. The financial analyst is also interested in
developing a procedure to classify future firms inte one of the three tvpes of firms. The
analyst can use MDA for achieving these objectives, Notice that two-group discrimi-
nant analysis 1s a special case of MDA,

Discrete Multiple-Group Discriminant Analysis

In the above purchase-behavior example. suppose that the independem variables are
categorical. In such a case one would use discrele multiple-group discriminant anal-
ysis. In a second example, suppose that the management of a telephone company is
interested in determining the differences among households that own one. two, or more
than two phones with respect to such categorical variables as gender. occupation. secio-
economic status. location, and 1ype of home. In this example. both the independent
and dependent variables are nonmetric. Discrete multiple-group discriminant analysis
would be the appropriate multivariate method: however, once again it should be noted
that the estimation techniques and classification procedures for discrete discriminant
analysis are quite different from those of discriminant analvsis.

L4 INTERDEPENDENCE METHODS

As mentioned previously. situations do exist in which it 1s impossible or incorrect 1o
delineate one set of variables as independent and another set as dependent. In these
situations the major objective of data analysis is to understand or identify wihy and how
the vanables are correlated among themscelves. Table 1.4 gives a list of interdependence
multivariate methods. The multivariate methods for the case of two variables are the
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Table 1.4 Interdependence Statistical Methods

Type of Data
Number of Variables Metric Nonmetric
Two + Simple + Two-way
correiation contingency
table
« Loglinear
models
More than two - Principal «  Multiway
components contingency
tables
« Factor » Loglinear
analysis models
= Correspondence
analysis

same as the methods for more than two variables and, consequently, are not discussed
separately.

1.4.1 Metric Variables

Principal Componenis Analysis

Suppose a financial analyst has a number of financial ratios (say 100) which he/she can
use to determine the financial health of any given firm. For this purpose, the financial
analyst can use all Y00 ratios or use a few (say two) composite indices. Each composite
index is formed by summing or taking a weighted average of the 100 ratios. Clearly.
it is easier to compare the firms by using the two composite indices than by using 100
financial ratios. The analyst’s problem reduces to identifying a procedure or rule to
form the two composite indices. Principal components analysis is a suitable technique
for such a purpese. It is sometimes classified as 2 data reduction technique because it
attempis to reduce a /arge number of variables to a few composite indices.

Factor Analysis

Suppose an educational psychologist has availabile students” grades in a number of
courses (e.g., math. chemistry, history, English, and French) and observes that the
grades are correlated among themselves. The psychologist is interested in determining
why the grades are comrelated. That is, what are the few underlying reasons or factors
that are responsible for the correlation among the course grades. Factor analysis can be
used to identify the underlying factors. Once again, since factor analysis attempts to
identify a few factors that are responsible for the correlation among a large number of
variables, it is also classified as a data reduction technigue. In this sense, factor analysis
can be viewed as a technique that attempts to identify groups or clusters of variables
such that correlations of the variables within each cluster are higher than correlations
of variables across clusters.
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Cluster Analysis

Cluster analysis is a technique for grouping observations into clusters or groups such
that the observations in each cluster or group are similar with respect to the variables
used to form clusters, and observations across groups are as different as possible with
respect to the clustering variables. For example. nutritionists might be interested in
grouping or clustering food items (i.e.. fish. beef. chicken, vegetables. and milk} into
groups such that the food items within each group are as homogeneous as possible
but food items across the groups are different with respect o the food items” nutrient
values. Note that in cluster analysis. observations are clustered with respect to certain
characteristics of the observations. whereas in factor analysis variables are clustered or
grouped with respect to the correlation berween the variables.

1.4.2 Nonmetric Data

Loglinear Models

Consider the contingency or cross classification table presented in Table 1.5. The data
in the table can be analyzed by a number of different methods. one of the most pop-
ular being to use crosstabulation or contingency table analysis to determine if there 1s
a relationship between the two variables. Alternatively, one could use Loglinear med-
els to estimate the probability of any given observation falling intc one of the cells
as a function of the independent variables—marital status and occupation. Loglinear
models can also be used to examine the relationship among more than two categorical

variables.

Correspondence Analysis

Suppose that we have a large contingency or crosstabulation table (say a 20 X 20 ta-
ble). Interpretation of such a large table could be simplified if a few components rep-
resenting most of the relationships between the row and column variables could be
identified. Correspondence analysis attains this objective. In this respect, the purpose
of correspondence analysis is similar to that of principal components analysis. In fact.
correspondence analysis can be viewed as equivalent to principal components analysis
for nonmetric data. Loglinear models and correspondence analysis can be generalized
to multiway contingency tables. Multiway contingency tables are crosstabulations for

more than two variables.

Table 1.5 Contingency Table

Marital Status

Never
Occupation  Married Widowed Divorced Separated Married

Professional 30 20 20 25 3
Clerical 30 40 10 10
BElue collar 23 0 a0 A 20
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L5 STRUCTURAL MODELS

In recent years a number of statistical methods have appeared for analyzing relation-
ships among a number of variables represented by a system of linear equations. Some
researchers have labeled these methods as second-generation multivariate methods. In
the following section we provide a brief discussion of the second-generation multivari-
ate methods.

Consider the causal model shown in Figure 1.1. The model depicts the relationship
among dependent and independent variables and is usually referred to as a path or a
structural medel. The model can be represented by the following system of equations:

Y| = qyX; + e
Yo = gyXa + e (1.2)
Y; = b}YI +b:Y2 + &3, .

where @) and &, are the path, or structural, or regression coefficients and the e, are
the errors in equations. A number of statistical packages (e.g., SAS) have routines or
procedures (e.g., SYSLIN) to estimate the parameters of the system of equations given
by Eq. 1.2,

Now suppose that the dependent variables (i.e., ¥) and the independent variables
(i.e., X) cannot be directly observed. For example, constructs such as attitudes, person-
ality, and intelligence cannot be directly observed. Such constructs are referred to as
latent or unobservable constructs. However, one can obtain multiple observable mea-
sures of these latent constructs. Figure 1.2 represents the medified path model given in
Figure 1.1. In the figure. x and v are, respectively, the observable measures of the inde-
pendent and the dependent variables. The part of the model in Figure [.2 which depicts
the relationship among the unobservable constructs and its indicators is referred to as

Figure 1.1 Causal model.

Xs5 ¥ X7 ¥y ¥a s

Figure 1.2 Causal model for unobservable constructs.
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the measirement model. and the part of the model that represents relationships among
the latent constructs is called the structural nodel. Estimation of mode] parameters can

be broken down into the following two parts:

1. Estimate the unobservable constructs using the observable measures. That is, first

estimate the parameters of the measurement model. Techniques like factor or con-~

firmatory factor analysis can be used for this purpose.

2. Use the estimates of the unobservable constructs. commonly referred to as facror
scores, to estimate the coefficients of the structural model.

LT

Recently. estimation procedures have been developed to simndianeously estimate the
parameters of the structural and measurement models given in Figure 1.2. These esti-
maticn procedures are available in the following computer packages: (1} the LISREL
procedure in SPSS: (2) the CALIS procedure in SAS: and (3) the EQS procedure in

BIOMED.

L6 OVERVIEW OF THE BOOK

Obviously. it is not possible to cover all the techniques presented in Tables |.1 and 1.4.
This book covers the following multivariate techniques:

1. Principal components analysis,

b2

Factor analysis.

Confirmatory factor analysis.

Cluster analysis.

Two-group discriminant analysis.
Multiple-group discriminant analysis.
Logistic regression.

MANOVA.

Canonical correlation.

SN v s W

Structural models.

[

Apart from regression and ANOVA, these are the most widely used multivariate tech-
nigues. Multiple regression und ANOVA are not covered because these two techniques
are normally covered in a single course and require a separate textbooXk to provide good
coverage. The four interdependence techniques are covered first, followed by the re-
maining six dependence techniques. Also included is a chapter discussing the assump-
tions made in MANOVA and discriminant analysis.

The following discussion format is used for presenting the material in the book:

1. Wherever appropriate. the concepts of the techniques are discussed using hypo-
thetical data and geometry. Geometry is used very liberally because it lends nself
10 a very Jucid presentation of most of the statistical 1echniques.

Geomertrical discussion is followed by an analytical discussion of the technique.
The analytical discussion is nonmathematical and does not use any matrix or linear
algebra.

!J
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3. Next, a detailed discussion of how to interpret the resulting output from such sta-
tistical packages as SPSS and SAS is provided.~ A discussion of the various issues
faced by the applied researcher is also included. Only the relevant portion of the
computer output is included. The interested reader can eastly obtain the full output
as almost all the data sets are provided either in tables or on the floppy diskette.

4. Most chapters have appendices which contain the technical details of the multivan-
ate techniques. The appendices require a fairly good knowledge of matrix algebra;
however, the applied researcher can safely omit the material in the appendices.

The next two chapters provide an overview of the basic geometrical and analyti-
cal concepts employed in the discussion of the statistical techniques. The remaining
chapters discuss the foregoing statistical techniques.

QUESTIONS

1.1 For each of the measurement situations described below, indicate what rype of scale is
being used.

(a3} Anownerof a Ford Escort is asked to indicate her satisfaction with her car’s handling
ease using the following scale:

-2 -1 0 ] 2
very dissatisfied very satisfied

{(b) In aconsumer survey. a housewife is asked to indicate her annual household income

using the following classification:
(i) $0-525.000 Level A
(i) $25.001-545,000 Level B
(iii) 345,001-%65,000 Level C
(v} $65.001-580.000 Level D
(v) Morte than $80,000 Level E

(¢} The housewife in (b) is asked to indicate her annual household income in dollars.

(d) A prospective car buyer is asked to rank the foltowing criteria. used in deciding which
car to buy, in order of their importance: (i) Manufacturer of the car; (it) Terms of
pavment; (iii} Price of the car; (iv) Safety measures such as air bags, antilock brakes;
(v) Size of the car: (vi) Automatic v. stick shift: and (vii) Number of miles to a gallon
of gas.

(e} Inaweight-reduction program the weight (in pounds) of each participant is measured
every day.

[.2 For each variable listed, certain measurement scales are indicated. In each case suggest
suitable operational measures of the indicated scale type(s). {(a} Classroom temperature:;
ratio scaled, interval scaled; (b) Age: nominal, ratio scaled: {c) Importance of various cri-
teria used to select a store for grocerv shopping: ordinal, interval scaled: {d) Opinion on the
importance of sex education in high school: interval scaled: and (e} Marital status: nominal.

1.3 Construct dummy variables to represent the nominal variable “race.” The possible races
are: (a) Caucasian: (b) Asian: (c) African—-American; and (d) Latin—-American.

1.4 A marketing research company believes that the sales (S) of a product are a function of the
number of retail outlets (Ng) in which it is available. the adventising dollars (4) spent on
the product. and the number of years (¥y) the product has already been available on the

*These packages are chosen as they are the most widely used commercial packages.
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market. The company has information on S, N, A, and Ny for 35 competing brands at a
given point in time. Suggest a suitable statistical method that will help the company test
the relationship between sales and Ng, A, and Ny.

In a nationwide survey of its customers, a leading marketer of consumer packaged goods
collected information about various buying habits. The company wants to identify distinct
segments among the consurers and design marketing strategies tailored to individual seg-
ments. Suggest a suitable statistical method to the marketing research department of the
company to help it accomplish this task.

An experiment is conducted to determine the impact of background music on sales in a
department store. During the first week no background music is played and the total store
sales are measured. During the second week fast-tempo background music is played and
total store sales are measured. During the third and final week of the experiment slow-
tempo background music is played and total store sales are measured,

Suggest a suitable suatistical method to determine 1if there are significant differences be-
tween the store sales under no-music, fast-tempo music, and slow-tempo music conditions.

ABC Tour & Travel Company advertises its tour packages by mailing brochures about
tourist resorts. The company feels it could increase its marketing efficiency if it were able to
segregate consumers likely to go on its tours from those not likely to go, based on consumer
demographics and lifestyle considerations. You decide to help the company by undertaking
some consumer research.

From the company's files you extract the names and addresses of consumers who had
received the brochures in the past two vears. You select two random samples of consumers
who went on the tours and those who didn’t. Having done this. vou interview the selected
consumers and collect dermographic and lifestyle information {using nonmetric scales)
about them.

Describe a statistical method that you would use to help predict the tour-going potential
of consumers based on their demographics and lifestyles.

How' do structural models (e.g.. covariance structure analysis) differ from ordinary multi-
variate methods {e.g., multivariate regression analysis)?



CHAPTER 2

Geometric Concepts
of Data Manipulation

A picture is worth a thousand words. A clear and intuitive understanding of most of
the multivariate statistical techniques can be obtained by using geometry. In this chap-
ter the necessary background material needed for understanding the geometry of the
multivariate statistical techniques discussed in this book is provided. For presentation
clarity, the discussion is limited to two dimensions; however, the geometrical concepts
discussed can be generalized to mere than two dimensions.

2.1 CARTESIAN COORDINATE SYSTEM

Figure 2.1 presents four points, A, B. C, and D, in a two-dimensional space. It is obvi-
ous that the location of each of these points in the two-dimensional space can only be
specified relative to each other, or relative to some reference point and reference axes.
Let O be the reference point. Furthermore. let us draw two perpendicular lines. Xy and
X, through point O.

The points in the space can now be represented based on how far they are from O.
For example. point A can be represented as (2, 3). indicating that this peint is reached
by moving 2 units to the nght of O along X; and then 3 units above O and parallel
to X,. Alternatively, point A can be reached by moving 3 units above O along X; and
then 2 units to the right of O and parallel to X,. Similarly, point 8 can be represented
as (—4,2), meaning that this point is reached by moving 4 units to the lett of O along
X, and 2 units above O and parallel to X5>. Note that movement to the right of or above
O is assigned a positive sign, and movement to the left of or below O is assigned a
negative sign. This system of representing points in a space is known as the Cartesian
coordinate system. Point O is called the origin, and the X and X3 lines are known as
rectangular Cartesian axes and will simply be referred to as axes. The values 2 and
—4 are known as X, coordinaies of the potnts A and B, respectively, and the values 3
and 2 as the X coordinates of points A and B, respectively.

In general, a p-dimensional space is represented by p axes passing through the origin
with the axes perpendicular to each other. Any point, say A, in p dimensions is repre-
sented as (aj, @z, ..., ap), where a, is the coordinate of the point for the pth axis. This
representation implies that the point A can be reached by moving a; units along the
first axis (i.e., X;), then moving 41 units parallel to the second axis {i.e., X,), and so
on. Henceforth, this convention will be used to represent points in a given dimensional
space.
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Figure 2.1 Points represented relative to a reference point.

2.1.1 Change in Origin and Axes

Suppose that the origin O and. therefore. the axes. X, and X». are moved to another
location in the space. The representation of the same points with respect 1o the new
origin and axes will be different. However, the position of the points in the space with
respect to each other (i.e.. the orientation of the points) does not change. Figure 2.2
gives the representation of the same points (i.e., A and B) with respect io the new
origin (O”) and the associated set of new axes (X} and X3).! Notice that points A and B
can be represented as (2, 3Yand (—4. 2). respectively, with respect to the origin O, and as

X
_‘_-
I .-"(:.?I! AS
-3, 1
B . {
=9, -[_ :
1
- e—e———_— SR, VY
o'l )
|
| ] l 1 1 Loy,
e L 1 2 3 3 5 6
-1
] g
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Figure 2.2 Change in origin and axes.

"Henceforth. the term oricin will b used to refer o both the origin and the associared set of reference axes
defining the Cartesian coordinate sy stem.
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Figure 2.3 Euclidean distance between two points.

{—3,2) and (~9, 1), respectively, with respect to the new origin, O*. The new origin O*
can itself be represented as (5, 1) with respect to the old origin, O. Algebraically, any
point represented with respect to O can be represented with respect (o the new origin
O~ by subtracting the coordinates of the origin O* with respect to O from the respective
coordinates of the point. For exanple, point A can be represented with respect to the
new origin 0" as (2 — 5,3 — 1)or (—3.2).

2.1.2 Euclidean Distance

One of the measures of how far apart two points are is the straight-line distance between
the two points. The straight-line distance between any two points is referred to as the
euclidean distance between the two points. The Pythagorean theorem can be vsed to
compute the euclidean distance between the two points. In Figure 2.3, according to the
Pythagorean theorem, the euclidean distance, D 45, between points A and B is equal to

Dig = J(5-22+ (3~ 1)?

= VIE.

or the squared euclidean distance, D?,, is equal to
Dig = 13.

In general the euclidean distance between any two points in a p-dimensional space is

given by
| P
Dag = | > (a;— b2, @D

where a; and b; are coordinates of points A and B for the jth axis representing the jth
dimension.

2.2 VECTORS

Vectors in a space are normally represented as directed line segments or arrows. The
vector or the arrow begins at an initia! point and ends at a terminal point. Or in other
words, a vector is a line joining two points (i.e., an initial and a terminal point). Nota-
tionally, vectors are represented as lowercase bold letters, and points as uppercase italic
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Figure 2.5 Relocation or translation of vectors,

letters. For example, in Figure 2.4 a is a vector joining points A and B. The length of
the vector is simply the euclidean distance between the two points, and ts referred to
as the norm or magnitude of the vector. Sometimes, the points A and B are, respec-
tively, referred 1o as the tail and head of the vector. Clearly. a vector has a length and
a direction. Vectors having the same length and direction are referred to as equivalent
vecrors. In Figure 2.4, vectors a and b are equivalent as they have the same length and
direction: vector ¢ is not equivalent to vectors a and b as vector ¢ has a different direc-
tion than a and b. That is. vectors having the same length and direction are considered
to be equivalent even if they are located at different positions in the space. In other
words. vectors are completely defined with respect to their magnitude and direction.
Consequently. vectors can be moved or translated in the space such that they have the
same tail or initial point. The vector does not change if its magnitude and direction are
not affected by the move or translation. Figure 2.5 gives the new location of vectors a,
b. and ¢ such that they have the same initial point. Note that vectors a and b overlap,
indicating that they are equivalent.

2.2.1 Geometric View of the Arithmetic Operations on Vectors

Vectors can be subjected to a number of operations such as (1) multiplying or divid-
ing a vector by a real number: (2) addition and/or subtraction of two.or more vectors;
(3) multiplication of two vectors: and (4) projecting one vector onto another vector. A
ceometrical view of these operations is provided in the following sections. In order to
differentiate between points, vectors, and real numbers the following representation is
used: (1) points are represented by uppercase italic letters; (2) vectors are represented
by lowercase bold letters: and (3) real numbers are represented by lowercase italie

letters.

Multiplicaticn of a Vector by a Real Number

A vector a multiplied by a real number & results in a new vector b whose length is
|4} times the length or magnitude of vector a. where |&] is the absolute value of k. The
real number. k. is commonly referred to as a scalar. For positive-valued scalars the
new vector b has the same direction as that of vector a, and for negative-valued scalars
the new vector b has an opposite direction as that of vector a. In Figure 2.6, for example,
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Figure 2.6 Scalar multiplication of a vector.

vector a multiplied by 2 results in a new vector b whose length is twice that of vector a.
and whose direction is the same as that of vector a. On the other hand, vector c, when
multiplied by —.5, results in a new vector d whose length is half that of vector ¢ and
whose direction is opposite to that of vector ¢. Notice that multiplication of a vector by
—.5 is the same as dividing the vector by —2. To summarize, muliiplying a vector by
any scalar &

® Stretches the vector if |k| > 1 and compresses the vector if [k| < 1. The amount of
stretching or compression depends on the absolute value of the scalar. If the value
of the scalar is zero, the new vector has zero length. A vector of zero length is
referred to as a nul! or zero vector. The null vector has no direction and. therefore,
any direction that is convenient for the given problem may be assigned to it.

¢ The direction of the vector is preserved for positive scalars and for negative scalars
the direction is reversed. The reversal of vector direction is called reflection.

That is. vectors can be refiected and/or stretched or compressed by multiplying them
with a scalar.

Addition and Subtraction of Vectors

ADDITION OF VECTORS. The sum or addition of two vectors results in a third vector.
Thatis. ¢ = a + b, and is obtained as follows:

» Reposition b such that its initial point coincides with the terminal point of a.

* The sum, a + b. is given by ¢ whose initial point is the same as the initial point of a
and the terminal point is the same as the terminal point of the repositioned vector b.

Figure 2.7 shows the concept of vector addition. The new position of b, such that its ini-
tial point is the same as the terminal point of a. is given by the dotted vector. Figure 2.7
also shows the addition b + a. Once again. the dotted vector shows the new position of a
such that its initial point is the same as the terminal point of b. Notice thata+b = b+a.

Fieure 2.7 Vector addition.
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Figure 2.8 Vector subtraction.

That is. vector addition is commutative. Also. notice that a + b is given by the diag-
onal of the parallelogram formed by a and b, and this is sometimes referrad to as the
parallelogram law of vector addition.

SUBTRACTION OF VECTORS. Subtraction of two vectors is a special case of vector
addition. For example. ¢ = a — b can be obtained by first multiplving b by —1 to yield
—b. and then adding a and —b. Figure 2.8 shows the process of vector subtraction.
Notice that ¢ = a — b can be moved so that its initial point coincides with the terminal
point of b, and its terminal point coincides with the terminal pointof a. Thatis, ¢ = a—b
is also given by the vector whose initial peint is at the terminal of b, and the terminal
point is at the terminal point of a.

Addition and subtraction of more than two vectors is a straightforward extension
of the above procedure. For example, the sum of three vectors a, b. and ¢ is obtained
by first adding any two vectors. say a and b. to give another vector which can then
be added to the third vector. ¢. It will become clear in the later chapters that addition
and subtraction of vectors is analytically equivalent te forming linear combinations or
weighted sums of variables to obtain new variables, which is the basis of most of the

multivariate statisucal techniques.

Multiplication of Two Vectors

The product of two vectors is defined such that it results in a single number or a scalar,
and therefore multiplication of two vectors is referred to as the scalar product or inner
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Figure 2.9 \Vector projections.
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dor product of two vectors. The scalar product of two perpendicular vectors is zero.
Multiplication of two vectors is discussed further in Section 2.4.4.

2.2.2 Projection of One Vector onto Another Vector

Any given vector can be projected onto other vectors.” Panel I of Figure 2.9 shows
the projection of a onto b and the resulting projection vector a,. The projection of a
onto b is obtained by dropping a perpendicular from the terminal point of a onto b.
The projection of a onto b results in another vector called the projection vector, and is
normally denoted as a,. The initial point of a, is the same as the initial point of b and the
terminal point lies somewhere on b or —b. The length or magnitude of a, is called the
component of a along b. As shown in Panel I of Figure 2.9, b, is the projection vector
obtained by projecting b onto a. Panel II of Figure 2.9 shows the projection vector a,
whose direction is in the direction of —b.

2.3 VECTORS IN A CARTESIAN COORDINATE SYSTEM

Consider the coordinate system given in Figure 2.10, which has the origin at point
0 = (0,0), and X, and X are the two reference axes. Let A = {ay,a>) be a point
whose X; and X> coordinates. respectively, are a; and g». Point A can be represented
by vector a whose terminus is point A, and the initial point is the origin O. Typically,
vector a is répresented as a = (a; a-»), where a; and a5 are called the components of the
vector. Vector a is also referred to as a 2-tuple vector where the number of tuples is equal
to the number of components or elements of the vector. Note that the components of the
vector are the same as the coordinates of the point A. That is, point A in a Cartesian co-
ordinate system can be represented by a vector whose terminus is at the respective point
and the tail is at the origin. Indeed. all peints in a coordinate system can be represented
as vectors such that respective points are the terminuses and the origin is the initial point
for all the vectors. In general, any point in a p-dimensional space can be represented as
a p-component vector in the p-dimensional space. That is, point A in a p-dimensional
space can be represented as a p-tuple vector a = (@ a=-*"a,). The origin O in a
p-dimensional space is represented by the null vector 0 = (00---0). Thus, any vector
in a p-dimensional Cartesian coordinate system can be located by its p components
(i.e.. coordinates).

Poimt A = {ay, a2}

Yectora =
(@, av)

e e e e =2
;

-

>

3]

O ) X

.

a

Figure 2.10 Vectors in a Cartesian coordinate system.

%A vector can also be projected onto spaces. Projection of vectors onto a space is discussed later.
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Figure 2.11 Trigonometric functions.

2.3.1 Length and Direction Cosines

We first provide a very brief discussion of the relevant trigonometric functions used in
this chapter. Figure 2.11 gives a right-angle triangle. The cosine of angle a is given by
the adjacent side ¢ divided by the hypotenuse ¢. The sine of the angle is given by the
opposite side # divided by the hypotenuse ¢. That is.

. b
sing = —.
¢

0 R

cosa =

Also, (cosa)® = (sina)* = 1 orcos®e@ + sin“a = 1.

The location of each vector in the Cartesian system or space can also be determined
by the length of the vector and the angle it makes with the axes. The length of any
vector 1s given by the euclidean distance between the terminal point of the vector and
the initial point (i.e.. the origin). For example, in Figure 2.12 the length of vector a is

given by

Dao = lall = Va1 — 0P +1a2—-0)2 = \;"af + a, (2.2)

where fja]| represents the length of vector a. In general. the length of a vector in p di-

mensions will be given by
L.
lall = |> (2.3)
j=1

\

where a; ts the jth component (i.e.. the jth coordinate).
As depicted in Figure 2.12. vector a makes angles of @ and 3. respectively. with X,
and X axes. [rom basic tigonometry. the cosine of the angle is given by

] ay
cosga = 7 = o= (2.4)
lia \ai +as
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Figure 2.12 Length and direction cosines.






